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Anisotropic nucleation and growth of multi-classes of dislocation loops under the combined actions of
fast-neutrons and an external applied stress are considered in modeling dislocation structure develop-
ment in metals and alloys. The stochastic nature of the nucleation kinetics is formulated via the Fok-
ker–Planck equation. The strain derived from the climb of the anisotropic dislocation structure is
separable into volumetric and deviatoric components, corresponding respectively to swelling and creep.
The creep contribution resulting from the development of the stress-induced dislocation anisotropy is
found to be very significant and exhibits a strong correlation with swelling. For stainless steel, our model
explains very well the complex deformation behavior observed in a wide variety of in-reactor
experiments.
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1. Introduction

Microstructure record left by an applied stress in stainless steels
during irradiation is often found characterized by an anisotropic
dislocation structure [1–5]. This is evident [5] of the operation of
stress-induced preferred absorption (SIPA) [6–11], a mechanism
that may produce irradiation deformation both directly and indi-
rectly. Directly, deviatoric strain is produced by the differential
climb speeds of dislocations with different orientations due to
the stress-induced bias differential. The associated creep rate is di-
rectly calculable based on point-defect properties obtainable from
atomistic methods [6], and has been the focus of most irradiation
creep studies [7–11]. Indirectly, the stress-induced differential
climb creates an anisotropic dislocation structure [4,5], which
causes deformation via a mechanism called SIPA-induced growth
(SIG) [12]. Theoretical estimates indicate that the associated strain
rate is sensitive to the swelling rate, with magnitudes that may be
very significant [12–14].

Experimentally, in-reactor deformation measurements in stain-
less steels [15–25] indeed exhibit two components, one indepen-
dent of swelling and the other coupled to swelling and has a
strain rate directly proportional to the swelling rate. In addition,
irradiation creep is often observed to be accompanied by an aniso-
tropic dislocation structure [5,20–25]. At the same time, the strain
ll rights reserved.
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rate usually persists for a substantial period of time, even after the
applied stress is removed [5]. These observations are strongly rem-
iniscent of the operation of SIG.

Most theories on irradiation-induced deformation have focused
on the direct component [7–11]. The indirect component is diffi-
cult to calculate, absent a good theory for interstitial loop nucle-
ation under an applied stress. Any investigation in this respect
has to be limited to qualitative studies based on simplifying
assumptions [12–14].

Recent developments in the theory of nucleation kinetics
[26,27] provide a good basis for treating the high sensitivity of
nucleation events to the net point-defect flux. The successful
modeling of nucleation and growth of dislocation loops in
unstressed samples in [26,27] helps explain dislocation structure
development with production bias [28] operating. In the
present paper, this theory is extended to treat the nucleation
and growth of multi-classes of differently oriented dislocation
loops in the development of dislocation structure under an
applied stress.

The objective of this paper is to holistically study irradiation
deformation in stainless steels, particularly the coupling between
creep and swelling associated with dislocation structure develop-
ment under an applied stress. Comparing the calculated results
with the experimental ones in the literature, we also hope to clarify
the role of the stress-induced anisotropy of the dislocation struc-
ture in the complex deformation behavior of stainless steels under
stress in a fast-neutron flux. Finally, the comparison may also test
the predictive capability of our dislocation structure development
model in the presence of an applied stress.

http://dx.doi.org/10.1016/j.jnucmat.2009.06.021
mailto:chung.woo@polyu.edu.hk
http://www.sciencedirect.com/science/journal/00223115
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2. Formulation

2.1. Preliminary considerations

Under cascade damage conditions of a fast-neutron flux, we
have to face the complication that a significant fraction of primary
interstitials produced are retained in clusters. Recognition of this
fact has led to the introduction of the production bias concept
[28]. This concept is based on the premise that point defects in
clusters do not participate in the conventional segregation of inter-
stitials and vacancies via preferential attraction of single intersti-
tials to dislocations. However, within this concept, the commonly
observed network formation via the nucleation and growth of ses-
sile Frank interstitial loops does not seem plausible. Indeed, at ele-
vated temperatures, vacancy clusters are thermally unstable, so
that the supersaturation of single vacancies is higher than that of
the single interstitials. The mean net vacancy flux received by
the thermally stable primary interstitial clusters makes nucleation
impossible without statistical variations. In reality, however, the
net vacancy flux fluctuates because of the stochastic nature of
migratory jumps and cascade initiation, so that interstitial loop
nucleation and growth is not a deterministic, but a probabilistic
event. In this connection, a stochastic treatment such as followed
in [26,27] is necessary. To consider the action of external stress,
this approach can be extended to take into account the loop orien-
tation dependence of the nucleation rate. The details will be dis-
cussed in the following subsection.

In a related issue, the effects of one-dimensional transport of
small interstitial clusters [29–31] observable in computer simula-
tions in pure metals [32] on interstitial loop nucleation and growth
should be considered. However, the invariable presence of compo-
sitional disorder in the crystal lattice due to alloying and various
thermal–mechanical treatment may lead to the trapping or scat-
tering of the clusters [6,33–35], drastically reducing the likelihood
of long-range one-dimensional transport of interstitial defects.
Moreover, recent investigations [36,37] showed that void lattice
formation in ‘‘pure” metals cannot occur if more than �1% of the
interstitial atoms undergo one-dimensional diffusion. The develop-
ment of large-scale heterogeneous void swelling found near grain
boundaries and dislocation walls can also be understood without
invoking the one-dimensional diffusion [38–40]. Most importantly,
the majority of void swelling models that have stood the test of
decades of experiments do not require the involvement of 1-D
SIA kinetics. All these suggest that the inclusion of one-dimen-
sional diffusion in irradiation-damage studies may not always be
necessary. Accordingly, we neglect the effects of the 1-D diffusion
SIA component in the present paper.

Small interstitial clusters coalesce with faulted loops during
climb, and may also serve as a source of interstitials to their
growth. This is clear from the in situ observations in dual-beam
experiments of Jenkins [41]. Indeed, both numerical [42] and ana-
lytical [26,27] calculations show that sufficiently large interstitial
loops may grow under the combined action of the dislocation bias
and continuous loop coalescence, despite the net vacancy flux that
they receive. The swelling produced by loop growth in this way is
in quantitative agreement with experiments [26,42].
2.2. Evolution equations of the Frank loops

Different populations of Frank interstitial loops and network
dislocations of different classes have different dislocation biases
according to their orientations with respect to the applied stress
[11]. The governing equation for evolution of the Frank loop popu-
lation of each class is similar to that previously derived for the case
of a single class of dislocations [26,42–43]. With the last two terms
describing the creation and annihilation of loops in the population,
the evolution of the kth loop class can be described by the Fokker–
Planck equation:
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Here fik(n, t) is the distribution function of interstitial loops of
the kth class in the space of loop sizes n at time t. Small immobile
interstitial clusters continuously generated in collision cascades
are considered as interstitial loop embryos. In the spirit of the pro-
duction bias theory [28], the formation of loop embryos are as-
sumed to be intra-cascade events, and the initial sizes, nig, of the
loop embryos are the same for all loop classes, as reflected by
the d-function in Eq. (1). They are treated as small dislocation loops
of radius ri = (nX/pb)1/2, where n is the number of interstitials in
the cluster, X is the atomic volume, b is the Burgers vector. The
rate of generation of embryos in collision cascades is given by
eikG/ng, where G is the effective generation rate of point defects both
in cluster and free form [28], and eik is the fraction of interstitials
forming embryonic loops of the kth class.

The ‘‘diffusivity” Dik(n) in Eq. (1) describes the stochastic spread
of the size distribution of interstitial loops in time due to random
fluctuations in the point-defect fluxes [43,44],
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where Zjk (j = i, v) is the reaction constant between the loop of the
kth class and point defects, Cj and Dj are respectively the average
concentration of point defects and their diffusion coefficient. Nd is
the average number of point defects generated per cascade both
in cluster and free form, hN2

dji is the average square of the number
of vacancies and interstitials generated per cascade. We also denote
the total sink strength for vacancies by kv

2, and for mobile intersti-
tials by ki

2. The two terms on the right-hand side of (2) are, respec-
tively, the contribution to Dik due to the randomness of the point-
defect jumps, and that of the cascade initiation [43,44].

The ‘‘drift velocity” Vik(n) consists of the two terms. The first one
is given by the conventional expression for the growth rate of
interstitial loops due to point-defect absorption:

VikðnÞjpd ¼
2priðnÞ

X
ðZikDiCi � ZvkDvCvÞ: ð5Þ

The second one represents the rate of change in the loop size
due to the absorption of smaller loops by coalescence and has
the following form [26,42]:

VikðnÞjcls ¼
2priðnÞ

X

Z n
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Here nmin is the size of interstitial clusters at which they be-
come mobile. According to Eq. (6), in the present approach the loop
coalescence is restricted only to the coalescence of the loops with
the same orientation.

The coalescence between loops of sizes n0 and n (n0 < n) is de-
scribed by the reaction constant Wk(n0,n) [26,42],
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In Eq. (7), the reaction distance between the coalescing loops is
assumed to be equal to the radius of smaller loop ri(n0), Vlk is the
average climb velocity of the loop segments, i.e.,

VlkðnÞ ¼
1
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Dlk(n) is the climb ‘‘diffusion coefficient” due to the fluctuating
point-defect fluxes. Similar to Eq. (2), Dlk can be written as [26,42]:
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Note that Dc
lk, unlike Ds

lk, is not directly related to the loop size.
Coalescence results in fewer loops. From Eq. (6), the law of mat-

ter conservation dictates that the last term in Eq. (1), which de-
scribes the loss of loops due to their coalescence, has to have the
form [42]
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where nm denotes the size of the loops at which they unfault and
join the network, qdk is the line density of network dislocations of
the kth class. The last term of Eq. (12) describes the absorption of
loops by network dislocations.

To establish the boundary conditions for the evolution equa-
tions, we assume that small clusters consisting of less than three
self-interstitials are 3-D mobile. Thus, interstitial clusters shrinking
below the minimum size nmin are not loop embryos any longer.
This condition is translated in the corresponding left boundary
condition for the Fokker–Planck equation (1), i.e.,

fikðnmin; tÞ ¼ 0: ð13Þ

Assuming that a loop growing beyond the size nmax becomes
incorporated into the network, we can also write the right bound-
ary condition, similarly to Eq. (13),

fikðn P nm; tÞ ¼ 0: ð14Þ

According to the evolution Eq. (1) and the boundary conditions
Eqs. (13), (14), the total number of interstitials Qik(t) accumulated
in loops of kth class is governed by the following simple law of
matter conservation:
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Here qik is the line density of loops of kth class, and
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is the flux of the interstitial loops in size space. The physical mean-
ing of each term in Eq. (15) is quite obvious from the foregoing.

Under the steady-state conditions there should be a balance be-
tween the loop creation and destruction, and, consequently, the to-
tal interstitial content of the loops should be conserved, i.e., dQik(t)/
dt = 0. This means that interstitials accumulating in the loops only
contribute to the total strain rate in the transient regime. The stea-
dy strain rate is the result of the climb and recovery of network dis-
locations, which we will consider in the following subsection.
2.3. Straining due to loop growth, dislocation climb and recovery

From Eq. (15), interstitial loops joining the network dislocation
population increase the total network line density at the rate
2pri(nm)Jss

ikðnm; tÞ/X. In addition, the stress-induced anisotropy
inherent in the Frank loop population also propagates into the net-
work dislocation density when they unfault [5]. On the destructive
side, climbing network dislocations may mutually cancel, for
example, via the dipole mechanism [45,46]. Adopting the simple
model for the dislocation recovery via dipole cancellation by climb,
the conservation equation for the network line density qdk of the
kth class can be written as [26,42]

dqdk
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is the climb velocity of the network dislocations. ZðNÞjk is the reaction
constant between network dislocations of the kth class and point
defects.

The strain rate in the a direction due to the climb of network
dislocations and the accumulation of interstitials in the loops can
be calculated from the equation

dea

dt
¼
X

k

_Q ik þ Vdkqdkb
� �
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where bka is the angle made by the Burgers vector of dislocations of
the kth class with the a direction.

The set of Eqs. (1) and (17) describes the evolution of the dislo-
cation component of microstructure. For these equations to have a
unique solution, equations to describe the concentrations of freely
migrating point defects Cj are needed. The corresponding steady-
state rate equations have the well-known form:
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Here k2
cj is the total sink strength of other sinks, such as the

voids, present in the damage microstructure. In Eq. (20) we also as-
sume that interstitial clusters shrinking below the minimum size
nmin at the rate Jss

ikðnminÞ spontaneously dissolve, and the corre-
sponding number of free interstitials nminJss

ikðnminÞ is added to the
population of mobile defects.

While swelling is very sensitive to material and environmental
variables, such as temperature, stress, alloy type, cold work and
composition, the experimental instantaneous creep rate appears
to depend only on the applied stress and the instantaneous swell-
ing rate [23,24]. This allows us to simplify the analysis in the pres-
ent work by treating the void sink strength k2

jc as a parameter
describing the rate of vacancy accumulation in the alternate sinks.
By varying this parameter, we are able to calculate steady-state
creep rates for the corresponding void swelling rates.

In the following, without loss of generality, we restrict ourselves
to only consider the stress effects of elastodiffusion [11], which
causes a bias differential due to diffusion anisotropy difference
(DAD) between the vacancies and interstitials according to
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Table 1
Material parameters for SS used in the calculations.

Parameter Value

Burgers vector, b [47] 2.07 � 10�10 m
Atomic volume, X [47] 1.15 � 10�29 m3

Trace of interstitial dipole tensor [48] 63.0 eV
Trace of vacancy dipole tensor [48] �2.82 eV
Normalized eigenvalue of SIA dipole tensor, p1

(i) [48] 1.5
Normalized eigenvalue of vaccum dipole tensor, p1

(v) [48] 2.73
Shear modulus, l 60 GPa
Intracascade interstitial clustering fraction, eik 0.4/3
Initial content of PICs, nig 10
Minimum size of interstitial cluster, nmin 4
Maximum loop radius, ri(nm) 40 nm
Average number of point defects per cascade, Nd 100
Intracascade recombination fraction 0.85
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Fig. 1. Evolution of the aligned qd1 (solid lines) and non-aligned qd2,3 (dashed lines)
line densities of network dislocations for the various stress levels at the zero total
swelling (total initial density of network dislocations qd(t = 0) = 3 � 1014 m�2).
Values of f1 = qd1/qd indicate the fractions of aligned network dislocations at the
dose 30 NRT dpa.
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where Z0
j is the reaction constant in the absence of stress, r is the

trace of the uniform external applied stress rml, P(j) is one-third of
the trace of elastic dipole tensor PðjÞml of point-defect, pðjÞm , m = 1 to
3, are normalized eigenvalues of PðjÞml such that RmpðjÞm = 3, Um is the
mth normalized eigen value of the external stress tensor rml such
that RmUm = 3, l is the shear modules, kðmÞk is the angle that the Bur-
gers vector of loops of the kth class makes with the mth eigen vector
of rml.

In a similar way, the reaction constant between point defects
and network dislocations can be written as

ZðNÞjk ðrmlÞ ¼ Z0
j 1þ ðp

ðjÞ
1 � 1ÞPðjÞ
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In the case of network dislocations kðmÞk is the angle between the
mth eigen vector of rml and the line direction of network disloca-
tions of the kth class.

For the uniaxial stress rml = rd1mdml, the reaction constants gi-
ven by Eqs. (22) and (23) take the form
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where kkl and kkN are, respectively, the angles made by the Burgers
vector of loops and by the line direction of network dislocations of
the kth class with the stress direction.

We represent the dislocation structure by three classes of dislo-
cations, one (k = 1) with Burgers vector aligned with the external
stress (kkl = 0, kkN = p/2) and two non-aligned (classes k = 2, 3;
kkl = p/2, kkN = 0). According to Eqs. (24) and (25), the reaction con-
stants for the three classes can be written respectively as
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When Zj2(r) = Zj3(r) and ZðNÞj2 ðrÞ ¼ ZðNÞj3 ðrÞ, Eq. (1) becomes iden-
tical for the dislocation classes k = 2 and k = 3. So is Eq. (17). Thus,
in the simplest case the total number of equations, which has to be
solved, can be reduced from 8 to 6. They are the two Fokker–Planck
equations (1) for the aligned and non-aligned loops, two equations
(17) for the aligned and non-aligned network dislocations plus
conservation Eqs. (20) and (21). It is also worth noting that values
of the corresponding terms, which are calculated with Eqs. (1) and
(17) for the non-aligned dislocations, should enter the conserva-
tion equations with a factor of 2.

3. Results

To facilitate comparison between model and experiment, stain-
less steel samples under a uniaxial tensile stress, i.e., r > 0, are con-
sidered. Material parameters are listed in Table 1. The results are
presented and discussed in the following subsections.

3.1. Dislocation structure and deformation in the absence of swelling

In Fig. 1, the time evolution of the dislocation densities of the
aligned and non-aligned network is shown in the absence of swell-
ing for various values of the applied stress. In general, the densities
of both types of dislocations decrease with time and, consistent
with the absence of swelling, the total volume remains unchanged,
i.e.,

_e1 þ _e2 þ _e3 ¼ _e1 þ 2 _e2 ¼ 0: ð29Þ

Under the uniaxial stress, the original isotropic dislocation
structure evolves anisotropically, yielding a dislocation structure
that has a distinctly higher density for the aligned class compared
with the non-aligned classes. The degree of the anisotropy in-
creases with the applied stress. In Fig. 1, at a neutron dose of 30
NRT dpa, the proportion of aligned dislocations increases mono-
tonically from 33% to 47%, 62% and 78% for increasing stresses of
50, 100 and 200 MPa, respectively.

Absent swelling, the positive climb of the aligned dislocations
must be provided by the interstitials ‘‘borrowed” from the non-
aligned dislocations that have lower biases, which effectively serve
as net vacancy sinks. Under such circumstances, an increase in the
network line density due to the unfaulting cannot occur with
the non-aligned loops i.e., Jss

i2;3ðnm; tÞ ffi 0. According to Eq. (17),
the non-aligned network dislocation density decreases with time.
Indeed, due to the larger amount of the interstitials that has to
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be ‘‘borrowed”, this decrease accelerates with increasing stresses.
The loss of non-align dislocations naturally also leads to the loss
of aligned dislocations, when the source of interstitials they can
‘‘borrow” from dwindles.

To understand in greater detail the relatively complex behavior
of the evolution of the aligned network dislocations, we plot in
Fig. 2 the flux of align loops joining the network dislocations as a
function of time (dose). The flux vanishes during the initial incuba-
tion period, at the end of which it quickly increases, peaks, and
then decline with increasing dose to a steady-state value indepen-
dent of the stress. During the incubation period, the aligned loops
are generally not sufficiently large to be incorporated into the net-
work. Consequently, both aligned and non-aligned network dislo-
cation densities decrease with time, regardless of the sign of the
dislocation climb velocity Vdk, being dominated by mutual cancel-
lation (see Eq. (17)). Nevertheless, the decrease slows down when
the climb velocity Vdk vanishes, producing the ‘‘knees” in the
aligned dislocations during the incubation. At the end of the incu-
bation period, the aligned loops start interacting with the network
and unfault. The flux of the aligned dislocation loops joining the
network rises sharply (see Fig. 2). The resulting peak in the loop
flux is reflected in the peaked aligned network dislocation density
in Fig. 1.

Both the growth of aligned loops and the climb of existing
aligned network dislocations have to rely on ‘‘borrowed” intersti-
tials. With the decreasing densities of non-aligned network dislo-
cations, the amount of interstitials that can be ‘‘borrowed” from
them also decreases with time. The number of aligned interstitial
loops joining the network starts to drop shortly after the initial rise
after the incubation (Fig. 2), leading to the reduction of line density
of the aligned dislocations seen in Fig. 1.

Absent voids, non-aligned dislocations substitute as net va-
cancy sinks. Theoretically, a continuous decline of the dislocation
line density will lead to their eventual decimation, at which point
irradiation creep stops. However, in practice this scenario is rarely
realizable because after an initial irradiation dose of �20–30 NRT
dpa, significant void swelling usually starts developing [49–52].
The decline of non-aligned dislocation density also means that in
the empirical creep law proposed by Garner et al. [49,51,52]
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ð _e1 � _S=3Þ
r

¼ B0 þ D _S; ð30Þ

the creep compliance B0 is actually dose dependent in the absence
of swelling. In Eq. (30), D is the creep–swelling coupling coefficient,
and _S is the instantaneous swelling rate. Furthermore, since the dis-
location densities qd2,3 drop faster with increasing stress (Fig. 1), the
creep strain at higher stress levels would start to saturate earlier.
Thus, the value of B0 extracted from the experimental measure-
ments at similar doses should decrease with increasing applied
stress. This conclusion is in agreement with the existing experimen-
tal observations [53,54].

In Fig. 3, the calculated creep strain in the stress direction e1(t)
is plotted as a function of irradiation dose for various applied stres-
ses. The time averaged values of the creep compliance B0 for r =
200 MPa changes from 1.1 � 10�6 at 20 NRT dpa to 0.86 �
10�6 MPa�1/NRT dpa at 30 NRT dpa. For r = 50 MPa these values
changes to 1.46 � 10�6 and 1.40 � 10�6 MPa�1/NRT dpa, respec-
tively. These calculated values are in very good agreement with
the typical range of experimental creep compliance of
B0 � 10�6 MPa�1/NRT dpa in the absence of swelling [21–24,53–
55].

3.2. Dislocation structure development in the presence of swelling

In the presence of swelling, the nucleation and growth of voids
provides an ample source of interstitials for the climbing disloca-
tions, mitigating their need to ‘‘borrow” from one another. At a suf-
ficiently high swelling rate, this source becomes strong enough to
supply all interstitials needed for the climb of the aligned disloca-
tions. In Fig. 4, the fluxes of loops joining the network dislocations
are shown as a function of swelling rate for various applied stres-
ses. It can be seen that above a swelling rate of _S � 0.1–0.2%/NRT
dpa, the non-aligned loops may already be able to grow to sizes
large enough to interact with the network, unfault, and add to
the line densities of the non-aligned network qd2,3(t) as shown in
Fig. 5.

We emphasize that the total line densities of network disloca-
tions in Fig. 5 are calculated. That they are well within the typical
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range of the experimental values observed in stainless steel [52]
lends credibility to the loop nucleation and growth treatment pres-
ently undertaken.

In Fig. 6, the fraction of aligned network dislocations f1(t) =
qd1(t)/qd(t) is plotted against the swelling rate, showing a mono-
tonic decreasing function. As a result, the deformation rate due
to SIG also decreases with increasing swelling rate. Indeed, for
low swelling rates ( _S � 0.1%/NRT dpa), the dislocation structure
shows maximum anisotropy (f1 � 1 in Fig. 6) and the total defor-
mation strain due to the sum of creep and swelling is realized
mostly through the climb of the aligned dislocations.
In Fig. 7, the ratio of steady-state strain rate in the stress direc-
tion to that due to swelling (i.e., _e1=ð _S=3Þ) is shown. Independent of
the applied stress, the ratio attains a maximum value of �3 in the
low swelling rate regime, in good agreement with the experimen-
tal total diametral strain rates of stressed tubes at 400 �C, which
swells at a steady rate of �0.1%/NRT dpa [21–23,51,55].

In Fig. 8, it can be seen from the slopes of the curves that the
creep rate increases linearly with the swelling rate at the onset
of swelling (i.e., when the swelling rate is low). As the swelling rate
increases, the creep rate tends to become saturated and makes a
proportionately smaller contribution to the total strain rate. This
explains why creep rates increase linearly with stress only up to
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a certain maximum stress, beyond which further increase does not
cause a proportionate increase in the strain rate [23]. These results
are also consistent with the observation of Garner and co-workers
[21,22,53] that creep rates first accelerate with the onset of
swelling and then decline as the swelling rate increases. In this re-
gard, we note that the absolute value of the creep rate ( _e1 � _S=3)
only tends to a saturated value, and does not actually decrease at
high swelling rates. Thus, due to the reduction of the SIG effect
as the swelling rate increases, there is a general tendency for the
applied stress to become less effective in driving the creep defor-
mation in the stress direction. This explains why creep equations
derived from data in the low swelling rate regime would over-pre-
dict the creep rate in the high swelling rate regime, as noted in
[55].

Using steady-state creep rates from Fig. 8, we can evaluate the
swelling–creep coupling coefficient D that satisfies the empirical
relationship (30). Since B0 actually decreases with increasing dose,
it should be set to zero in Eq. (30) for steady-state calculations. The
results are shown in Fig. 9. It can be seen that D in Eq. (30) is not a
constant, but decreases with increasing swelling rate. This is in
good agreement with experiments [52,53], where D decreases from
D � 6 � 10�3 MPa�1 at _S � 0.1%/NRT dpa to D � 2 � 10�3 MPa�1 at
_S � 0.3%/NRT dpa.

The stress-dependent term in brackets in the reaction constants
in Eqs. (26)–(28) is much smaller than unity for the stresses con-
sidered. In a first approximation both the climb-rate differentials
and the creep rates should be linear functions of the applied stress.
The numerical results in Figs. 8 and 9 show that this is indeed the
case for a wide range of swelling rates. A deviation from the linear
dependence of creep on the stress takes place when the swelling
rates are low, i.e., when the dislocation structure is very aniso-
tropic (f1 >> f2,3), and most of the strain is provided by the climb
of the aligned dislocations only. As a result, _e1 � _S=3 � 2 _S=3
(Fig. 8), and there is no explicit dependence on the stress. The
dependence is only implicit, through the maximum value of the
swelling rate, at which the dislocation structure still shows the
maximum anisotropy. It is clear from Fig. 9 that this maximum va-
lue decreases with stress.
4. Discussions

Decades of studies of in-reactor creep deformation in stainless
steels consistently showed that irradiation creep is strongly cou-
pled to the void swelling of the material. Foster et al. [15] were
among the first to propose an empirical equation in which the
creep rate is the sum of two components: one that is swelling-
independent, and the other that is directly proportional to the
swelling rate. Many subsequent experiments [15–25] yield results
that support this observation. The I-creep model has been used to
account for the coupling [18,19] because it predicts a creep rate
proportional to stress and swelling rate. However, observable cor-
relations between irradiation creep and the concomitant micro-
structural development seem to point to complexities beyond the
grasp of this model. Indeed, Garner and co-workers [21,22,53] ob-
served that creep rates first accelerate with the onset of swelling
and then decline as the swelling rate increases. Creep equations
developed from data on highly pressurized tubes over-predict
the creep observed in fuel pins where the onset of void swelling
precedes the development of significant stress levels [55]. Creep
rates increase linearly with stress only up to a maximum stress, be-
yond which any further increase of the applied stress does not
cause a proportionate increase in the strain rate [23]. The most
revealing observation is the anisotropy of the dislocation structure
that accompanies irradiation creep [20–25], and the continuation
of creep over a substantial period of time, even after the applied
stress is removed [5].

In Section 3, it can be seen that the straining process involving
both swelling and creep is derived from the climb of the same dis-
location structure, evolving under the combined action of the ap-
plied stress and the neutron irradiation. The swelling strain
comes from the volumetric component, and the creep from the
deviatoric component, and that is all. The onset of void swelling
segregates out the vacancies, which would otherwise annihilate
SIAs in the loops or at the dislocations network, slow down disloca-
tion climb and reduce the deformation rate. For typical void swell-
ing rates in stainless steels, this source of freed-up SIAs produces a
very strong effect. Comparing Figs. 2 and 4, it is clear that the pres-
ence of swelling leads to a much higher generation rate of new net-
work dislocations. Thus, even without an applied stress, a swelling
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rate as low as 0.05%/NRT dpa might produce an axial strain of 0.5%
at 30 NRT dpa, which could be as large as that created by an applied
stress of 200 MPa in the absence of swelling (see Fig. 3). To further
illustrate the effect of swelling on creep, Fig. 8 shows that even for a
relatively low swelling rate of �0.1%/NRT dpa the strain rate in the
stress direction could be increased by several times.

In Section 3.2, we can also see that swelling makes a significant
and direct contribution to the deviatoric strain as long as the dislo-
cation structure is anisotropic. Thus, even if the applied stress is re-
moved and all dislocations climb at exactly the same speed, the
deviatoric component of the strain rate will remain in the presence
of swelling until the dislocation anisotropy is totally wiped out.
The specimen deformation in this case is entirely due to SIPA-in-
duced growth (SIG) [12–14]. These results explain very well the
correlation between dislocation anisotropy and irradiation creep
[4,5,21–25], and the apparent memory of stress that continue to
produce creep even after the applied stress is removed [5].

While the presence of voids enhances creep by facilitating the
operation of SIG, it also trims down the amount of interstitial ‘‘bor-
rowing” from the non-aligned dislocations and tends to impede the
development of dislocation anisotropy under the applied stress.
This is seen in Figs. 5 and 6, where the fraction of the aligned dis-
locations at steady-state sharply drops when the swelling rate in-
creases from 0.1% to 0.2 %/NRT dpa. Indeed, at _S ffi 1%/NRT dpa the
dislocation structure becomes practically isotropic, and there is
hardly any direct creep contribution from swelling, i.e., SIPA-in-
duced growth vanishes.

From the foregoing it follows that at low swelling rates (such as at
temperatures below the high swelling regime, or at the onset of swell-
ing) void swelling accelerates the ‘‘creep” rate via SIG, mainly due to
the developing dislocation anisotropy. However, at high swelling
rates, the dislocation anisotropy decreases and the SIG rate stops to in-
crease. This is reflected in the creep–swelling coupling coefficient D
which varies inversely with the swelling rate, decreasing from a value
of D > 10�2 MPa�1 at a swelling rate of 0.05%/NRT dpa to a value of
D� 10�3 MPa�1 at a swelling rate of�1%/NRT dpa (Fig. 9). This behav-
ior of D is in good quantitative agreement with experiments [51–53].
It also means that the limiting value of D � 0.6 � 10�2 MPa�1 derived
from the experiments is representative of all low swelling rate cases
with _S � 0.1%/NRT dpa [21–24,52–53]. The reduction of the anisot-
ropy of dislocation structure at high fluence, where swelling rate is
high, has been reported as well [3,5].

Although the creep–swelling coupling coefficient D decreases
with increasing swelling rate, the corresponding creep compliance
given by the product D _S does not. In other words, despite the re-
duced responsiveness of the deviatoric strain rate to the swelling
rate, the magnitude of the creep rate does not decrease at high
swelling rates (Fig. 8). This is because the net interstitial flux to
the dislocations increases with the swelling rate and compensates
for the lost anisotropy. Nevertheless, the gradual loss of relative
importance of a constant creep rate in an increasing total (i.e., swell-
ing and creep) strain rate is hardly surprising (see Figs. 7 and 8).
Experimentally, the reduced sensitivity of the total strain rate on
the stress at high swelling rate is a well-established observation
and has been interpreted as creep cessation at high swelling [5,51].

We also note that qualitatively, and to a certain extent quanti-
tatively, the numerical results obtained in the present paper agree
reasonably well with analytical considerations in [13] and [56].
Making the assumption that the stress only affects the steady-state
loop-number density but not the loop size and using the stress-in-
duced diffusion anisotropies of vacancies and self-interstitials, the
authors of [13] and [56] calculate the relative dislocation densities
fk as a function of the stress and swelling rate. From this they can
determine the deviatoric strain rate due to SIG, without having to
calculate the network line densities qdk and the fluxes of the inter-
stitial loops joining the network. Despite the large simplification,
the constraints imposed by the law of matter conservation make
sure that the general behavior of the creep–swelling coupling coef-
ficients agree with that shown in Fig. 9.

Unlike the present results, the values of B0 in the absence of
swelling calculated in [13] and [56] are independent of dose, which
can be traced to the implicit assumption that non-aligned disloca-
tions always exist. As a result, the steady-state solutions obtained
becomes unphysical when the swelling rate is too low. However,
within the framework of [13] and [56] it can be easily shown that,
without the artificial limitation, a continuous steady-state solution
for any finite value of the swelling rate exists with a zero steady-
state value of B0. In other words, in agreement with the present re-
sults and the law of matter conservation, at t ?1 the time average
value of the creep compliance B0 tends to zero.

5. Summary and conclusions

In this paper, we physically model dislocation structure devel-
opment in stainless steel under the combined actions of fast-neu-
trons and an external applied stress from the anisotropic
nucleation and growth of multi-classes of cascade generated dislo-
cation loops. We use the Fokker–Planck equation approach to in-
clude the stochastic effects due to diffusion jumps and cascade
initiation, which is particularly important for the nucleation and
growth of interstitial loops under the operation of production bias.
In our model, bias differential among dislocations of different clas-
ses is created by the stress-induced diffusion anisotropy. With
atomistically calculated point-defect properties, the total deforma-
tion strain rates due to dislocation climb under different uniaxial
stresses is calculated for stainless steel for various void swelling
rates. Our results show that:

(1) Under the combined actions of fast-neutrons and an external
applied stress, an initially isotropic dislocation structure is
changed into an anisotropic one. The fraction of the aligned
network dislocations decreases strongly from close to 100%
in the absence of swelling to approaching 33% for a swelling
rate beyond �0.5%/NRT dpa. The decrease is faster for lower
stresses.

(2) The total deformation due to the dislocation climb can be
separated into volumetric and deviatoric components,
responsible respectively for swelling and creep. The
steady-state creep can be very well represented by the equa-
tion _e1 ¼ ðB0 þ D _SÞr, with a creep compliance that is a linear
function of the swelling rate, which is responsible for the
coupling between creep and swelling. The swelling-indepen-
dent contribution can be traced to the climb-rate difference
between the aligned and the non-aligned dislocations i.e.,
SIPA, while the swelling-dependent contribution comes
from the stress-induced anisotropy of the dislocation struc-
ture, i.e., SIG. Except for very small swelling rates, the SIG
compliance is several times larger than the SIPA contribution
and is relatively constant, i.e., independent of the applied
stress and the swelling rate.

The creep behaviors predicted based on this model are in good
agreement with a variety of experiments, both qualitatively and
quantitatively, and describes very well the coupled behavior of
irradiation creep and void swelling in stainless steels via the aniso-
tropic development of the dislocation structure under stress.
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